Cara Mudah dan Cara Benar dalam Menentukan dan Menghitung Median pada Tabel Distribusi Frekuensi dan Histogram

Dalam potensi ini kita akan akan mempelajari cara memilih median (nilai tengah) data berkelompok. Kita tahu bahwa median pada data tunggal yaitu data yg terletak di tengah-tengah setelah data diurutkan. Begitu pula pada data berkelompok, median yakni nilai yg terletak di tengah-tengah data.  Data berkelompok yg disuguhkan dlm bentuk tabel dinamakan tabel distribusi frekuensi. Sedangkan data kalangan yg disajikan dlm bentuk diagram pada dinamakan histogram. Sebenarnya masih banyak penyuguhan data berkelompok lainnya mirip poligon & ogive.

Bagaimana cara memilih median (nilai tengah) sebuah data berkelompok?

 Dalam kesempatan ini kita akan akan mempelajari cara menentukan median  Cara Mudah & Cara Benar dlm Menentukan & Menghitung Median pada Tabel Distribusi Frekuensi & Histogram

Sebelum memilih median, hal-hal yg perlu diketahui dlm mengkalkulasikan nilai tengah antara lain sebagai berikut.

1. Banyak data (n)

2. Tepi batas bawah kelas median (Lo)

3.  Frekuensi kelas median (fmed)

4.  Frekuensi kumulatif sebelum kelas median(Sigma fmed)

5.  Panjang kelas (p)

Unsur-unsur di atas merupakan nila-nilai yg akan digunakan dlm menjumlah median data berkelompok.

Rumus median data berkelompok



Dalam kesempatan ini kita akan akan mempelajari cara menentukan median  Cara Mudah & Cara Benar dlm Menentukan & Menghitung Median pada Tabel Distribusi Frekuensi & Histogram


Nah, bagaimana cara & tindakan memilih (mengkalkulasikan) median data berkelompok (tabel distribusi frekuensi & histogram?
Mari Simak beberapa pola berikut.
Contoh 1
Perhatikan data berat badan dlm tabel berikut ini.
Berat Badan (kg)
Frekuensi
40–44
4549
50–54
5559
60–64
6569
7
9
12
13
6
3
Tentukan Median data di atas.
Jawaban:
Data di atas diperoleh.
Berat Badan (kg)
fi
xi
40–44
4549
50–54
5559
60–64
6569
7
9
12
13
6
3
42
47
52
57
62
67
Jumlah
50
Banyak data (n) = 50
Karena median berada di tengah-tengah, maka median terletak pada data ke 25,5 yaitu pada kelas 50 – 54. Dengan demikian diperoleh unsur-unsur yg lain selaku berikut.
Tepi batas bawah kelas median (Lo) = 49,5
Frekuensi kelas median (fmed) = 12
Frekuensi kumulatif sebelum kelas median (Sigma fmed) = 16
Panjang kelas (p) = 5
Dengan demikian nilai median data mampu dijumlah selaku berikut.

Dalam kesempatan ini kita akan akan mempelajari cara menentukan median  Cara Mudah & Cara Benar dlm Menentukan & Menghitung Median pada Tabel Distribusi Frekuensi & Histogram

  Cara Menentukan Sumbu simetri dan Titik Puncak Fungsi Kuadrat Bentuk y = ax2 + bx + c

Jadi, median data yakni 53,25 kg.
Nah, kini amati cara menentukan median dr data bentuk histogram berikut.
Contoh 2.
Perhatikan data tinggi badan sejumlah siswa pada histogram berikut.


Dalam kesempatan ini kita akan akan mempelajari cara menentukan median  Cara Mudah & Cara Benar dlm Menentukan & Menghitung Median pada Tabel Distribusi Frekuensi & Histogram

Tentukan median tinggi badan dr data di atas.
Jawaban:
Banyak data = n = 15 + 17 + 25 + 25 + 15 + 12 + 11 = 120
Tepi batas bawah kelas median (Lo) = 160,5
Frekuensi kelas median (fmed) = 25
Frekuensi kumulatif sebelum kelas median (Sigma fmed) = 57
Panjang kelas (p) = 3
Dengan demikian median data dapat dijumlah selaku berikut.

Dalam kesempatan ini kita akan akan mempelajari cara menentukan median  Cara Mudah & Cara Benar dlm Menentukan & Menghitung Median pada Tabel Distribusi Frekuensi & Histogram

Kaprikornus, median tinggi badan yaitu 160,86 cm.

Demikianlah sekilas bahan tentang  cara mengkalkulasikan & menentukan median suatu data yg disajikan dlm bentuk tabel distribusi frekuensi & histogram.

Semoga yg sedikit ini bisa membantu.
Untuk mempelajari cara menjumlah rata-rata & modus, silakan Anda buka LINK di bawah ini.
Salam Sukses
Artikel Terkait


Cara Cepat & Praktis Menentukan & Menghitung Simpangan Baku (Deviasi Standar) pada Data Tunggal & Data Kelompok