Soal dan Pembahasan Relasi atau Fungsi (Soal Ujian Nasinal)

Relasi dari himpunan A ke himpunan B yaitu pemasangan anggota himpunanA dengan anggota himpunan B. Fungsi (pemetaan) dari A ke B adalah sebuah hubungan yang lebih khusus yang menghubungkan setiap anggota A dengan sempurna satu anggota B. Untuk lebih mengerti soal aplikasi wawasan perihal korelasi atau fungsi,  simak kumpulan soal-soal berikut.

Soal ❶(UN 2017)
Fungsi f dirumuskan dengan f(x) = 15 – 2x. Jika f(b) = 7, nilai b yakni…..
A. -4
B. 1
C. 4
D. 11
Pembahasan:
Diketahui: f(x) = 15 – 2x, f(b) = 7
Ditanyakan: Nilai b.
Penyelesaian:
f(x) = 15 – 2x
f(b) = 7
<=> 15 – 2b = 7
<=> -2b = 7 – 15
<=> -2b = -8
<=> b = -8/-2
<=> b = 4
(JAWABAN: C)

Soal ❷(UN 2017)
Diketahui rumus f(x) = 2x – 5. Jika f(k) = -15, maka nilai k ialah…..
A. -10
B. -5
C. 5
D. 10
Pembahasan:
Diketahui:
f(x) = 2x – 5, f(k) = -15
Ditanyakan: Nilai k.
Penyelesaian:
f(x) = 2x – 5
f(k) = -15
<=> 2k – 5 = -15
<=> 2k = -15 + 5
<=> 2k = -10
<=> k = -10/2
<=> b = 5
(JAWABAN: B)

Soal ❸ (UN 2016)
Fungsi f dinyatakan dengan f(x) = 3x + 5. Hasil dari f(2b – 3) adalah…..
A. 5b + 8
B. 5b + 2
C. 6b – 4
D. 6b – 15
Pembahasan:
Diketahui: f(x) = 3x + 5
Ditanyakan: f(2b – 3).
Penyelesaian:
f(2b – 3) = 3(2b-3) + 5
              = 6b – 9 + 5
              = 6b – 4
(JAWABAN: C)

Soal ❹ ( UN 2015)
Diketahui rumus fungsi f(x) = 2x – 5. Nilai dari f(4p – 3) adalah…..
A. 8p – 11
B. 8p – 8
C. 4p – 8
D. 4p – 2
Pembahasan:
Diketahui: f(x) = 2x – 5
Ditanyakan: f(4p – 3).
Penyelesaian:
f(4p – 3) = 2(4p-3) – 5
              = 8p – 6 – 5
              = 8p – 11
(JAWABAN: A)

  B. Perhatikan Gambar Berikut Ini, Kemudian Berilah Apresiasi Terhadap Gambar Tersebut Tentang;

Soal ❺ (UN 2015)
Diketahui rumus fungsi f(x) = 3x + 2. Nilai dari f(4y – 7) ialah…..
A. 12y – 23
B. 12y – 19
C. 12y – 11
D. 12y – 5
Pembahasan:
Diketahui:
f(x) = 3x + 2
Ditanyakan: f(4y -7)
Penyelesaian:
f(4y -7) = 3(4y – 7) + 2
             = 12y – 21 + 2
             = 12y – 19
(JAWABAN: B)

Soal ❻(UN 2013)
Fungsi f dinyatakan dengan f(x) = ax + b. Jika f(2) = 1 dan f(7)= 16, nilai f(-3) ialah…..
A. -14
B. -4
C. 4
D. 14
Pembahasan:
Diketahui:
f(x) = ax + b
f(2) = 1   <=> 2a + b = 1…..(1)
f(7) = 16 <=> 7a +b = 16 …(2)
Eliminasi persamaan (1) dan (2):
2a + b = 1
7a + b = 16
<=> -5a = -15
<=> a = -15/-5
<=> a = 3
Subtitusi nilai a = 3 ke salah satu persamaan, diperoleh:
2a + b = 1
<=> 2(3) +b = 1
<=> 6 +b = 1
<=> b = 1 – 6
<=> b = -5
Kaprikornus, f(x) =3x – 5
f(-3) = 3(-3) – 5
        = -9 – 5
        = -14
(JAWABAN: A)

Soal ❼( UN 2014)
Fungsi f dinyatakan dengan rumus f(x) = ax + b. Jika f(-5) = 15 dan f(5) = -5, maka f(1) yakni…..
A. -2
B. 3
C. 5
D. 8
Pembahasan:
Diketahui:
f(x) = ax + b
f(-5) = 15 <=> -5a + b = 15…..(1)
f(5) = -5   <=>   5a +b = -5 …(2)
Eliminasi persamaan (1) dan (2):
-5a + b = 15
 5a + b = -5
<=> -10a = 20
<=> a = 20/-10
<=> a = -2
Subtitusi nilai a = -2 ke salah satu persamaan, diperoleh:
-5a + b = 15
<=> -5(-2) +b = 15
<=> 10 +b = 15
<=> b = 15 -10
<=> b = 5
Makara, f(x) = -2x + 5
f(1)  = -2(1) + 5
        = -2 + 5
        = 3
(JAWABAN: B)

Soal ❽ (UN 2012)
Diketahui fungsi f(x) = px + q, f(-2) = -13 dan f(3) = 12. Nilai f(5) ialah…..
A. 15
B. 18
C. 20
D. 22
Pembahasan:
Diketahui:
f(x) = px + q
f(-2) = -2p + q = -13 ….(1)
f(3) = 3p + q = 12 ……..(2)
Eliminasi persamaan (1) dan (2), diperoleh:
-2p + q = -13
 3p + q = 12
<=> -5p = -25
<=> p = -25/-5
<=> p = 5
Subtitusi nilai p = 5 ke salah satu persamaan:
-2p + q = -13
<=> -2(5) + q = -13
<=> -10 + q = -13
<=> q = -13 +10
<=> q = -3
Kaprikornus, f(x) = 5x – 3
f(5) = 5(5) – 3
      = 25 – 3
      = 22
(JAWABAN: D)

  Jelaskan Struktur Dan Fungsi Jaringan Penyusun Akar Tumbuhan Dikotil

Soal ❾(UN 2008)
Fungsi f dinyatakan dengan rumus f(x) = ax + b. Jika f(2) = 3 dan f(-3) = 13, maka nilai -a + b adalah…..
A. -12
B. -3
C. 9
D. 11
Pembahasan:
Diketahui:
f(x) = ax + b
f(2) = 2a + b = 3 …….(1)
f(-3)= -3a + b = 13 ….(2)
Eliminasi persamaan (1) dan (2):
 2a + b = 3
-3a + b = 13
<=> 5a = -10
<=> a = -10/5
<=> a = -2
Subtitusi nilai a = -2 ke salah satu persamaan, diperoleh:
2a + b = 3
2(-2) + b = 3
<=> -4 + b = 3
<=> b = 3 + 4
<=> b = 7
-a + b = -(-2) + 7
          = 2 + 7
          = 9
(JAWABAN: C)

Soal
Garis y = 2x – 3 melalui titik A(P,5). Nilai P yaitu…..
A. -4
B. -1
C. 1
D. 4
Pembahasan:
Karena titik A(P,5) lewat garis, maka subtitusi nilai x = P dan y = 5 ke persamaan garis:
y = 2x – 3
<=> 5 = 2P – 3

<=> 2P = 5 + 3
<=> 2P = 8
<=> P = 8/2
<=> P = 4
 (JAWABAN: D)

Soal
Pada pemetaan f:x => px + 3. Jika -2 => 2, maka bayangan -8 yaitu…..
A. -5
B. -1
C. 1
D. 3
Pembahasan:

Diketahui:
Pemetaan: f:x => px + 3 atau
f(x) = px + 3
f(-2) = 2
Ditanyakan f(-8).
Penyelesaian:
f(-2) = -2p + 3 = 2
<=> -2p = 2 – 3
<=> -2p = -1
<=> p = 1/2
Makara, f(x) = (1/2)x + 3
f(-8) = (1/2).(-8) + 3
        = -4 + 3
        = -1
(JAWABAN: B)

Demikian artikel kali ini mengenai Soal dan Pembahasan Relasi atau Fungsi yang berhubungan dengan soa-soal cobaan nasional wacana relasi atau fungsi, gampang-mudahan menolong sahabat pelajar semua dalam menuntaskan soal-soal yang berhubungan dengan relasi atau fungsi.