5 [(2n+1)! / (n+2)!] = 3(2n-1)! / (n-1)! Maka Nilai N Adalah

5 [(2n+1)! / (n+2)!] = 3(2n-1)! / (n-1)! maka nilai n yakni

5[(2n+1)!/(2n-1)!] = 3[(2n-1)!/(n-1)!]
[5(2n+1)(2n)(2n-1)!] / (2n-1)! = [3(n+2)(n+1)(n)(n-1)!]/(n-1)!
5(2n+1)=3(n+2)(n+1)
20n+10 = 3n^2 + 9n +6
3n^2-11n-4=0

n= 4 atau n= -1/3

1²+3²+5²+…..+(2n-1)²=n(2n-1)(2n+1)/2​

Jawab:

Penjelasan dgn tindakan:

1²+3²+5²+.....+(2n-1)²=n(2n-1)(2n+1)/2​

Buktikan bahwa 1^2+3^2+5^2+….+(2n+1)^2=1/3 (n+1)(2n+1)(2n+3), n>0​

Penjelasan dgn langkah-langkah:

agar berfaedah.

maaf kalo salah

Buktikan bahwa 1^2+3^2+5^2+....+(2n+1)^2=1/3 (n+1)(2n+1)(2n+3), n>0​” title=”Buktikan bahwa 1^2+3^2+5^2+….+(2n+1)^2=1/3 (n+1)(2n+1)(2n+3), n>0​”/> </p><div class=

5 x (2n+1)!/(n+2)! = 3 x (2n-1)!/(n-1)!

Jawab:

notasi  faktorial

n! =  n . (n -1) .(n- 2)!

Penjelasan dgn langkah-langkah:

[ 5  (2n + 1) ! ] / (n + 2)!  =  [ 3 (2n – 1 ) ! / (n – 1 ) ! ]

5(2n + 1)! / (2n- 1)!   =  3 ( n+2)! / (n – 1)!

5(2n + 1)(2n) = 3 (n +2)(n + 1) (n)

10 (2n + 1) = 3 (n² + 3n + 2)

20 n + 10 =  3n² + 9n + 6

.

3n² +9n + 6 – 20n – 10 =0

3n² – 11n  – 4  = 0

(3n  + 1)(n  –  4 ) =0

n = – 1/3  atau n = 4

syarat i)  (n – 2) ! –> n > 2   , ii ) (n – 1) ! –> n > 1

HP n = – 1/3  atau n = 4  dgn x > 2  dan n> 1

HP  n yg memenuhi n = 4

5 [(2n+1)! / (n+2)!] = 3(2n-1)! / (n-1)! maka nilai n adalah

maaf kalo salah ya, semangat 5 [(2n+1)! / (n+2)!] = 3(2n-1)! / (n-1)! maka nilai n adalah

  Kisi-Kisi PTS Kelas 6 Semester 1