Integral Sin(x + π/3)cos(x + π/3) batas atas π/6 batas bawah 0

₀∫π/6sin(x + π)cos(x + π)dx

                      3               3
= 1 ₀∫π/6sin(2x + 2π) + sin 0° dx
   2
= 1  – 1/2 cos(2x + 2π/3) + 0 ]π/6
   2                                              0
= – 1  cos 2x cos 2π/3 – sin 2x sin 2π/3 ]π/6
     4                                                              0
= – 1/4  (cos 2π/3 cos 2π/3 – sin 2π/6 sin 2π/3) – cos 0 cos 2π/3 – sin 0 sin 2π/3)
= – 1/4 1/2(- 1/2) – 1/2√3(1/2√3) – 1(-1/2) + 0
= – 1/4 – 1/4 – 3/4 + 1/2
= – 1/4 – 1/4 – 3/4 + 1/2
= -1/4(- 1/2)
= 1/8
     
  Grafik fungsi f(x) = x³ – 3x² – 9x + 15 turun dalam interval