Daftar Isi
invers dr matriks (3 -2) (-1 1) adalah
A = (3 … -2) (-1…..1)
1/det A = 1/(3.1 – (-1)(-2) = 1
adj A = (1….2)/(-1….3)
invers A = 1/det A ( adj A)
A
Invers matriks [ 2 3 1 1 ] ialah = ⋯ *
Jawaban:
determinan dr matriks \: \binom 2 \: \: \: \: \: \: 3 – 1 \: \: – 2 \: yakni
= 2(-2) – (-1)3
= -4 + 3
= -1
sehingga,
\begin gathered = – \frac 1 1 \binom – 2 \: \: \: – 3 1 \: \: \: \: \: \: \: 2 \\ = \binom 2 \: \: \: \: \: \: \: \: 3 – 1 \: \: \: – 2 \end gathered
=−
1
1
(
12
−2−3
)
=(
−1−2
23
)
Invers dr matriks:(2 1 -3 -1)
Penjelasan dgn langkah-langkah:
aku anggap invers A
saya anggap 2 itu A, 1 itu B, -3 itu C, & -1 itu D
semoga membantu & berfaedah…
invers dr matriks (2 1) (3 1)
Determinan matriks=2-3=-1
Invers= (1/determinan matriks)[tex] \left[\begin array ccc 1&-1\\-3&2\\\end array \right] [/tex]
Invers=[tex] \left[\begin array ccc -1&1\\3&-2\\\end array \right] [/tex]
Invers dr matriks
2 1
3 1
yaitu …
[tex]\begin align \begin pmatrix 2&1\\3&1 \end pmatrix ^ -1 &= \frac 1 2\cdot 1-1\cdot 3 \begin pmatrix 1&-1\\-3&2 \end pmatrix \\ &= – \begin pmatrix 1&-1\\-3&2 \end pmatrix \\ &= \begin pmatrix -1&1\\3&-2 \end pmatrix \end align [/tex]