√ Invers Dari Matriks (3 -2) (-1 1) Adalah

invers dr matriks (3 -2) (-1 1) adalah

A = (3 … -2) (-1…..1)
1/det A =  1/(3.1 – (-1)(-2) = 1
adj A = (1….2)/(-1….3)

invers A  = 1/det A ( adj A)
A

Invers matriks [ 2 3 1 1 ] ialah = ⋯ *

Jawaban:

determinan dr matriks \: \binom 2 \: \: \: \: \: \: 3 – 1 \: \: – 2 \: yakni

= 2(-2) – (-1)3

= -4 + 3

= -1

sehingga,

\begin gathered = – \frac 1 1 \binom – 2 \: \: \: – 3 1 \: \: \: \: \: \: \: 2 \\ = \binom 2 \: \: \: \: \: \: \: \: 3 – 1 \: \: \: – 2 \end gathered

=−

1

1

(

12

−2−3

)

=(

−1−2

23

)

Invers dr matriks:(2 1 -3 -1)​

Penjelasan dgn langkah-langkah:

aku anggap invers A

saya anggap 2 itu A, 1 itu B, -3 itu C, & -1 itu D

semoga membantu & berfaedah…

Invers dr matriks:(2 1 -3 -1)​

invers dr matriks (2 1) (3 1)

invers dr matriks (2 1) (3 1) Determinan matriks=2-3=-1
Invers= (1/determinan matriks)[tex] \left[\begin array ccc 1&-1\\-3&2\\\end array \right] [/tex]
Invers=[tex] \left[\begin array ccc -1&1\\3&-2\\\end array \right] [/tex] invers dr matriks (2 1) (3 1)

Invers dr matriks
2 1
3 1
yaitu …​

[tex]\begin align \begin pmatrix 2&1\\3&1 \end pmatrix ^ -1 &= \frac 1 2\cdot 1-1\cdot 3 \begin pmatrix 1&-1\\-3&2 \end pmatrix \\ &= – \begin pmatrix 1&-1\\-3&2 \end pmatrix \\ &= \begin pmatrix -1&1\\3&-2 \end pmatrix \end align [/tex]

  1 2 3 4 5 6 To 100